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ABSTRACT

The compressible laminar boundary layer equations ore considered for

hypersoni c fl ow around a sl ender body . The most i mportant i nteracti on (i . e . ,

the boundary layer inviscid interaction), is taken into account. The tangent

wedge formula for two dimensional bodies is used for the external pressure dis-

tribution. The boundary layer equations and the boundary conditions are trans-

formed into a familiar form by using some features of the transformations of

Howarth, Dorodni tsyn, Stewartson, and Mangler. A linear  viscosity-temperature

low and Newtonian fluid approximations are introduced.

The formulation of the problem is general and is applicable for both two

dimensional and oxi symmetri c slender bodies. The assumption of a Prandd number

of unity and of an isothermal body are not mandatory but are invoked here to

make the governing equations more tractable.

The solution of nonsi mi lar boundary layer equations is based on an inte-

gration  by the method of steepest descent . Inversion of series is necessary to

complete the integration. Because of the additional boundary condition at the

separation point, as well as the characteristics of the flow field near and down-

stream of the separation point, the analysis is carried out separately for the tl ow

ahead of separation and for the flow near and downstream of reparation. Since

the solution of nonsi mi I ar boundary layer equations as well as tangent wedge

formulation is coupled, an iteration scheme is de g el oped .

The pressure distribution, skin friction, displacement thickness and heat

transfer are computed for a flat plate in hypersonic flow. The calculations are

iii



carried out for various wal l conditions i ncl uding heated plate and gas properties

to demonstrate the physical aspects of the problem. The results are in reasonably

good agreement with the available experimental observations and analytical

solutions. It should be noted that the present results are computed without

specifying any particular free stream Mach number.

One may expect to encounter rarefied gas effects in those regions of the

flow possessing very sharp gradients (i -e-,  regions in which the velocity, pressure

or temperature change appreciably in the space of a few mean free paths re-

gardless of whether or not the absolute density of the gas flow is especially low).

In addition to this rarefied gas effect in the vicinity of the leading  edge, the

merging of the shock wave and the boundary layer modifies the structure of the

flow  field at the leading  edge . Therefore, the present results are applicable

below the rarefaction parameter, V.. approximately equal to 0. 15.

iv
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SECTION I

INTRODUCTION

According to the Prandtl's C1 ] boundary layer concept, one can divide

th s fl ow fi el d around a body i nto two regi ons . The regi on i n whi ch vi scous forces

are important is confined to a thin layer (called the boundary y ayer) adjacent to

the body and to a thin wake behind it . The other regime is external to this

boundary layer where inertia forces play a dominant role in describing the flow

field.

Extensive discussion of the boundary layer theory exists in the literature

12 through 101. Even though the boundary layer equations are a simplified version

of Novier-Stokes equations, they are still a set of non-linear partial differential

equations. The complexity increases with the inclusion of compressibility,

pressure gradient, and heat transfer effects. Due to these difficulties, only a

very limited  number of studies, numerical and analytical, have been carried out

for specific cases at the present time. In the following, various techniques for

solving the ordinary boundary layer problems will be briefly described.

For flows over a fla" plate and stagnation point regions, similarity solu-

tions require the system to possess a Prandtl number of unity, linear  viscosity-

temperature relation across the boundary layer, an isothermal surface and a

certain particular di strihuti on of the free stream velocity. Von Karman-Pohl hausen's

integral method relaxes some of these restrictions. However, the method fails

rather dismally to predict the separation point for Schubauer's C11 ] experimentally

observed pressure distribution. Extensive studies of these integral methods were



made in References 12 through 16.

The concept of the combination of the integral method and similar solutions

was introduced in References 17 through 20. This approach requires the know-

ledge of similar solutions. Another method is based on the assumption of local

similarity [ 3, 20, and 21 1 where the derivatives with respect to the x-coordinate

are small compared to the derivatives with respect to the y-coordinate. Also the

terms whi ch are functions of x are assumed to take on thei r I ocal val ues .

A very limited  number of solutions have been obtained for the non-

similar boundary layers. One approach is to replace the x derivatives with a

finite difference formula and then integrate the resulting total differential equations

by standard methods E23 through 261. Since integration of coupled ordinary

differential equations with variable fluid properties is involved in an iteration

scheme, it requires considerable amount of computation time even on high speed

computers. The other approach is due to Meksyn [27 through 351 who used the

method of steepest descent in integrating the nonsi mi I ar boundary layer equation

for incompressib l e  flow . The method is quite simple to apply ara appears power-

ful . However, complete understanding of the convergence of the series is locking.

Obtai ning the solutions of boundary layer equations by finite difference

methods has been the subject of much study in the recent literature 136 through

431. Since the governing partial differential equations are of parabolic type,

they can be solved stepwise downstream starting with the initial velocity, the

temperature profileses and specific boundary conditions. The derivatives in the

partial differential equations are replaced by difference formulas. In doing so,

it is quite common in the literature to replace the products of derivatives or

2
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3

non -1 i meor terms wit: 	 .^)ar difference formulas in order to obtain sim pl e linear

difference equations. In addition to this drawback, one has to depend on correct

initial profiles which may not be obtainable in many applications.

The bodies traveling at hypersonic velocities experience not only f irst

order effects (i . e ., si mpl a boundary layers) but also second order effects such as

those due to longitudinal  curvature, transverse curvature, enthalpy gradient,

entropy gradient and displacement thickness. The essential difference between

the hypersonic viscous flow and the ordinary boundary layer flow is that the flow

immediately outside of the hypersonic boundary layer is greatly influenced by

the solution of the boundary layer equations. For instance, in the case of a

uniform stream flowing  over a flat plate placed along the direction of the main

strearn, the pressure gradient along the plate can be neglected in on ordinary

boundary layer problem; but it must not be neglected in hypersonic viscous flows

problerns because a significant flow deflection in the boundary layer produces a

curved shock in the external flow.

At hypersonic ,peeds, Weracti ons of the boundary layer with the ex-

ternal stream become more important than in subsonic and low supersonic flows;

they lead to more difficulties than in the usual compressible boundary layer

theory. The most important interaction  on slender bodies is boundary l ayer-

i nvi sci d interaction.  This will be discussed more in detail in Sections II and IV.

The problem of predicting the characteristics of a hypersonic laminar boundary

layer that interacts with the external flow field is solved by using the tangent

wedge formulation for the i nvi sci d flow field and the method of steepest descent

for the viscous flow.



The problem of the boundary layer inviscid interaction on a flat plate

has been solved by Blattner 1391 , Dewey 1211, Mann and Bradley [221, and

Chan X201 among many others. Blottner, Dewey, and Chan used the tangent

wedge formula for the external pressure distribution. Bradley 1221 adopted the

method of characteristics for the external pressure distribution and a numerical

procedure for the integratior of the exact boundary layer equations. Solutions

of this type are time consuming and too costly for engi nceri ng applications.

Bl ottner 1391 used a finite difference technique to obtain the solution of the

boundary layer equations. Since an initial profile, which may not be available

for all problems, is needed for each dependent variable, he could not compute

the solution for a heated flat plate. Dewey [211 used the local similarity concept

whereas Chan [201 adopted a combination of similar sol uti ores and an integral

method

In this investigation, a method of analysis which was proposed by Jeng et

of 11121 is employed for predicting the shear stress, pressure distribution, and heat

transfer coefficient for the hypersonic flow . The integration of nonsi mi l ar boundary

layer equations is carried out by the method of steepest descent. The present

boundary layer solution is then applied to calculate the interaction problem in

hypersonic flows with the inviscid flow solutions.

The results of the flow field calculotium, shown graphically on Figs. 3

through 18, are described in Sections IV and V. A sufficient number of results

based on different wall temperatures and gas properties are presented to illustrate

the physi cal aspects of the prob I em . Typi cal resul is whi ch are pl otted versus a

hypersonic interaction  parameter X are pressure distribution, skin friction,

4



displacement thickness, and heat transfer.

In the case of an adiabatic plate, the results are in good agreement

with the available experimental observations and analytical solutions. In

the case of a cold plate, the agreement is reasonably good.

5
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SECTION II

MATHEMATICAL MODELING OF PHYS'ICAL SYSTEMS IN
COMPRESSIBLE LAMINAR BOUNDARY LAYERS

The ul ti mure objective of the present study is to integrate analytically

the equations of continuity, motion and energy for a hypersonic flow post two-

dimensional and slander axi symmetri cal bodies. It is impossible  to obtain a

closed form solution to the general equations of motion and energy equation .

However, some simplifications can be realized for certain special cases and thus

yielding analytical solutions.

In this section compressible lominor boundary layer equations are con-

sidered for flows ove+ two-dimensional or axi symmetri col slender bodies. In

addition, continuity, perfect gas low and viscosity model are introduced to

render a solution to the problem. Sufficient number of boundary conditions are

provided to complete the formulation. This boundary layer equations are non-

di mensi onal i zed in such a way that one can seek asymptotic solutions by a wel I -

known method. The specially introduced dependent and independent variables

are due to Dorodni tsyn - Haworth - Stewartson - Meksyn's transformations,

which also contain the transformation used by Mangler C 441 for axi symmetri cal

boundary layers.

Various boundary layer parameters of interest are discussed. The most

important feature of the boundary layer - i nvi sci d interaction for hypersonic

f I cws over sl ender bodi es i s i ntroduced . The sel f -i nduced pressure i nteracti on

between the viscous and the i nvi sci d flows on a slender body moving at hyper-

sonic speed stems from the relatively large outward stream line  deflection induced
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by the thick boundary layer. At hypersonic speed, the deceleration of gas due

to viscosity in the bounds E•y i,-,yar generates high temperature in this region. As

a result, the boundary layer in this region is rather thick, and its rate of grow+h

is proportional to the square of the Mach number for a given Reynolds number of

the .external flow . i hi s thickening of the viscous layer thus deflects the external

flow significantly. At very high speeds, even small changes in the flow in-

clination produce large changes in pressure; and the pressure induced by the

thickening of the boundary layer, in turn, feeds Lick into the viscous layer,

thus of fecti ng i is rate of growth . Thi s effect i s i ntroduced through a tangent

wedge formula and an iteration  scheme . Further details are given in Section Ill.

2.1 Dimensional Form of Co.npressiLla Laminor Boundary Layer Equations

(a) Partial Differential Equations:

Consider the steady flow of a perfect gas over an axi symmetri cal or two

dimensional body, using the intrinsic: coordinate system (x, y) where x is measured

along the body surface from the stagnation point and y is measured along the

outward normal from the body surface. The flow of a compressible, viscous,

heat conducting fluid is mathematically derr.ribed by the continuity, Novi er-

Stokes and energy equations in addition to the equation of ztate, a heat con-

ductivity law and a viscosity low. For flows at large Reynolds numbers or small

viscosity, invoking the usual assumption that the boundary layer thickness is

small compared to the longitudinal  body radius of curvature and that the centri-

fugal forces are negligible, Prandtl has shown that the continuity, Navier-Stokes

and energy equations can be simpWIed to the followLg compressible laminar



boundary layer equations:

conti nui ty:

a x (Cur) + as (Cvr) = 0	 (2-1)
Y

x - momentum:

	

^u=+Cvau=- ixL 	 a ( 4 aU	 2)a x	 Ty 	 + ay	 ay

y - momentum:

L s 0	 (2.3)ay

Energy:
2

Cu ax (c T ) + Cva (c T)° u^ + µta u + a (K aT)
p	 Y p	 x	 ` Y	 Y	 Y

(2.4)

Equation of State:

p s CRT
	

(2.5)

where i 'r- 0 for o two-dimensional flow and i = 1 for an axisymmetricol flow,

and r is the body radius from the axis of symmetry.

The above equations do not contain transverse curvature terms for axi-

symmetric flows (i . e . , the body radius is independent of y). Since the present

analysis is intended for very slender bodies and flat plates, the transverse curva-

ture effect has not taken into accoL

It should be noted also that the body forces are neglected in formulating

these equations.

a



(b) Viscosity Model

The most well known formula for the viscosity of a gas from kinetic theory

of gases i s Southerl and's I aw . However, i t i s not uncommon i n I i terature to use

another linear  viscosity law which is of the following form because of its sim-

plicity and being capable of providing reasonabl e results.

w

	

µ = A T	 (2.6)

where A and w are constants

The I i near vi scosi ty model (i . e . , wi th w taken as uni ty i n Eq . (2.6) )

is used in the following analysis.

2.2 Nondimensional Form of Boundary Layer Equations

The present study is concerned with laminar boundary layers in gases

flowing  over a slender body at high velocities. This subsection is mainly devoted

to summarizing the procedure used for transforming the equations of the boundary,

layer so that they be more amenable to asymptotic series expansi on .

(a) Dependent and Independent Variables:

The two independent variables are:

2Y

o u	 cm
	

/r

Lm

T1=(, r '	 u l	 y	 dy	 (2.8)

	

1^2 u,, 9 VJAVw	0

9



a f
u = 

u 1 a T1
(2.14)

10

The two dependent variables are:

X = 42u. S	 f (9, r1)	 (2.9)

h
S (C 	 s	 - 1h	 (2.10)

0

where h  is the local stagnation enthalpy, i . e.

2
h s h +2s 	 (2.11)

The definition of the stream function (X ) is given in the fol lowing subsection.

(b) Partial Differential Equations:

Since the requirement for the existence of a stream function is the con-

tinuity condi tion, its relation in terms of the velocity components u and v

from the continuity equation is

i	 ^mu =Cr 1	 q w	 a X
Y	

(2.12)

i
^m

v = -(r) VA	
a 	

(2.13)

These velocity components can be rewritten in terms of v modified stream

function f as

2Y

	

V - r ' T	
vw 

u If +29  of + 2g (^ 1
3i	 Y^ uM

	(L) T	 2 u	 1	 69	 \ r / 	 c	 2m	

00

g	 1	 u l
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TX—x (^ ) u 1 - 1	 rl -aa--71	 (2.15)

In a&i ti on to the perfect gas l ow, an i sentropi c relation is assumed for

the fluid outside the boundary layer. These assumptions lead to the following

relations
2Y(c'

 	 Y 1	 (2.16)pl^p°° _
	

c

and

To1=1+ Y2 1 M^	 (2.17)

Since the temperature appears explicitly in a velocity relation v and

later in a density ratio, it is desi rable to rearrange the dimensionless temperature

ratio in terms of f and S as shown below

T	 To c p T u2 	 u2 (2.1$)T 1	 T1 cp To + 2cp T0	2cpT1

Using the definitions of the speed of sound (c 1 = Y RT d, and the enthalpy

function S as well as the Eqs. (2.5), (2.14), and (2.17), Eq. (2.18) becomes

T 1 	 2	 1	 2	 1 va - —n)
	 (2.19)

Substitution of Eq . (2.19) into Eq . (2.15) yields the equation for the

transverse velocity

v =. _ r i	 A 	 t 1 + Y_ I M 2 (S+1)
(L)	 c^	 2u.,t	 1	 2	 1

2
Y -1 M2 of

2	 1	 a r1
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+ of	 a 3f
	aT I 	 a ,q3

2
(2.22)

	

f ^2^ 3  + 2^ L 
l 3i cam,	 Y_ , , 	 U0, 8 	r i u

a^	 ( r /	 c	 2 a x (L
1	

1	 a,^

	

1	 u
I

(2.20)

Making use of the above relations, the momentum and energy equations after some

simplification reduce to the following  form:

Momentum:

a 3   + f a 2 f + A S+1 - / a f 2 = 2^ of a2 f - of 32 	
(2.21)

a 713	 aTI 2	
6-7)	 VaIn T^	 ag 

a T11

12

Energy:

	

1	 a 2 S +f as =2 ` aS of - a 	 df	 _ Pr-1

	

Pr	 a ,q 2	 a^	 art	 aTi a T
	

Pr

2
(Y- 1) M1

1+ Y 2 1 ^^2

where

=	 2^

c

(—c' 

l ul

d _	 CO,

d^	 c1 u  )
(2.23)

Several authors derived similar to the Eqs . (2.21)21) and (2-22). For example,

one can find in Chapter 8 of Hayes and Probstei n 133 and Cohen and Reshotoko

One can also find momentum equation similar to the Eq . (2 .21) in Reference 0351

besides familiar momentum equation in incompressible flow field. However, one

should note that they are not exactly the same. They differ slightly either in the

definition of independent variables, dependent vari abl es or nondi mensi onl i zati on .

2.3 Boundary Conditions

Since slip and temperature jump at the surface are important near the

leading  edge, the boundary layer flow is considered only after a small distance



from the leading edge. This wil l be discussed further in Section IV.

The boundary condition on the velocity at the wall follows from the re-

quirement of no slip, and the surface temperature must satisfy the condition that

there Is no heat transfer at the wall or it exhibits a specified distribution at the

wall:

u=v= oat y = 0 ,	 (2.24)

T
and either a y	 0 or the surface temperature, Tw is a function of x only

y - o
or independent of x. At the outer edge of the boundary layer, the values of

1i and T are specified by the inviscid flow solution. Hence at y = °D

u = u1

T = T 1	 or	 h = h 1	 (2.25)

To avoid rarefied gas effects or low Reynolds number effects such as velocity slip

or temperature jump at the leading edge, an upper estimate of the validity of the

present analysis will he specified from the existing literature.  This wil l be dis-

cussed in detail in Section IV.

Introducing the definitions of dependent and independent variables and

i-el ati ons (2.14), (2-119), (2.20) into Eqs . (2.24) and (2.25), the physical

boundary conditions reduce to the following nondimensional form:

A t r, _ 0:

f=0, 
of 

= 0	 (2.26)

and either a ^ 	 10 for insulated wall

or S = S  (given) for nonadiabatic plate.

13
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a f	 t and S S 0.
()TJ

At ri-'	 , (2.27)

2.4 Boundary Layer Pa rameters

In the study of interactions between the stream and the immersed body,

one is likely  to encounter the most important quantities such as viscous stress and

enthalpy. The objective of the present analysis is to determine the modified

stream function and the enthalpy function. Once these functi ons are determined,

it will be a simple matter to obtain any other parameter of the boundary layer.

(a) Displacement Thickness:

The boundary layer displacement thickness is defineci a
00

s	 fo (1 - u
1	 1

(2.28)

The di spincement thickness indicates the distance by which the external

streamlines are shifted outwards owing to the formation of boundary layer. The

effective body is the sum of geometri cal body and the displacement thickness.

Therefore, the displacement thickness is necessary to determine the effective body

in a hypersonic flow where the interaction between the boundary layer and in-

viscid flow has strong influence on the external pressure distribution.

The physical definition of displacement thickness is further transformed

in terms of new dependent and independent variables as shown below

	

* ^ ^	 2 u^, 	 Y - 1	 2 	 2

b - ^^" A °°	 u	 z(1- f )+ 2 M 1 (1 -f )- S

	

1	 1

1+ Y 2 , M 1/ J d'^ 1	 (2.29)
1

where the prime (') denotes differentiation with respect to 71 . (Perfect gas l ow

F	 r. ,	 r.1r^...:; ,.,^, ... r...w.,^	 .r.r.,......w...	 ....	 wh	 ' "^ 'pYS..-....rrxs •>::_	
.J^J
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and Eq . (2.19) are used in achieving the above form). This can he further simpl i fied

by integration by parts and ;ijpl ying the boundary conditions. The result is

6 = -C-- A	 2— = I 1 + (Y- 1) M^ I 2 - (1 + Y2 1 M^) I3	(2.30)
1	 i

where

11
	 oS

rr
f	 T1 d i1

IM

I '^ S f	 f 71 ctrl	 (2-3 0a )
2	 c>

and

I = S S 71 drl
3 0

(6) Shear Stress

Assuming a Newtonian Fl uid, the shear stress at the wall in cortesi on

coordinates is

w
	 au	

g 0	 (2.31)
ay 	 Y

From the defi ni ti on ')f T1, Eq . (3.8), the partial differentiation of 71 with respect

to y yields
i

	

a rl	
(2.32)r	 u 1

	a 
y	 (r 1
	 70-0/	 2u.0 JTv:

Using Eq . (2.32), the viscosity model and the definition of the dependent variable

f, one obtains the shear , stress at the wall as

	

T -	
A V 00	

r	 pl u2 (a2 f
w	 00 ^L ^ p 1	 2	 _	 (2.33)

2 u„ 9	 °^	 a 11	 ^1- 0



Eq . (2.33) is important in aerodynamic drag calculations and in establishing

separation point in regions of adverse pressure gradient.

(c) Beat Transfer

The heat transfer at the wall by conduction is given by

16

Q M - K
w

aTl
ty/ y - o

(2.34)

Instead of introducing a model for thermal conductivity K which is a

function of temperature, another form of Eq. (2.34) may prove to be useful .

µ	 a
- P ay

(ci)`I )
y-0 (2.35)

P cP
when Pr	 K Prandtl Number.

Using the viscosity-temperature relationship, the dependent and inde-

pendent variables as well as boundary conditions, Eq. (3.35) may be transformed

i nto the f of I owi ng form:

.FA ^	 pl (,r1uI a as
Qw	 ^ 	 /	 Pa"1 ^1 = 0 (2.36)2 um

Eq . (2.36) is useful in designing heat shields on various hypersonic vehicles

as wel l as ascertaining the effect of heat transfer on separation point.

2.5 Pressure Distribution

It is intended to carry out the analysis on slender bodies wi th a sharp

leading  edge . The interaction of the leading  edge shock wave and the boundary

l ayer is important in hypersonic boundary layer flow. The presence of leading

edge shock wave is more significant because of the large outward stream line  de-

flection caused by a thick boundary layer at hypersonic speeds. This is explained

IJ



r

in detai l in Reference 3.

It cs customa ry to divi de the flaw field into several regions as shown in

Gig. 1. The rarefied gos effects (such as slip flaw and the shock structure) play

a major role ; ci the leading edge region. This will be discussed in detail in

Section IV.

It is difficult to establish the b4 . jaries of these various regions. Oguchi

1451 gives an estimate of the upper boundary of strong i0eroetion region based

on wedge-like flow. Since the thin shoc;l wave assumption i' s  involved, the

of i di ty is questionable. However, the; i -pui i gents and the theory [46,47-1

which describe the merged luyer regime t iovided as estimate of upstream limit

for the strong interaction regime. Therefore, the analysis presented herein is

applicable only for the flow downstream of this upstream limit.

(a) Tangent-Wedge Formula

A simple, approximate, inviscid inethod for obtaining surface pressure

distribution on two dimensional slender bodies at hypersonic speeds is the tangent

wedge approximation. The surface pressure at any point on a body at on arbi + rory

angle of attack is °aken to be equal to the pressure on a wedge whose half angle

equals the local inclination angle of the streamline , i th respect to the free stream.

Similarly, tangent cone approximations are provided for axisymmetric bodies.

The tangent wedge formula from Reference 3 (Eq. 7.3. 1) is

^P 1
	

1

	

1+ Y M2 62	 Y+ 1 + 
	

+1 1	 +	 1	 (2.37)
PW	 °' 1	 4	 4	 M2 e2

M 
1

where 6 1 is the angle of effective body shape.

17



For a normal shock, the pressure ratio is

-- Y^ M? - Y-^-	 (2.38)
P6

For an oblique shock, the pressure ratio becomes

PI	 2 Y M2 si n 2 0 ^ Y 1	 (,e .39)
pOO	 Y	 y +-T

where 0 represents the oblique shock angle.

i'oi a hypersonic fi cw and vary slender bodies (when 0 and 91 are smal l), Eq .

(2 .39) can be approximated as

PI	 2 Y M2 82 0 2 - Y^	 (2.40)Poo
Y+ 1	 W	 1	 02	 Y+ 1

1

A simple relation between ^ and A i C48J is

Sin 0 Sine
MCOs i n 2 - 1	 Y 2 1 MZ cos d =^^	 (2.41)

For smol t values of 8 1 and large values of Ma such that M e > 1, 0 must

of so be smol I and hence Eq . (2.41) may be approximated as

.^ Y +1 +
F^^L
	1	 (2.42)8 1	 4 	 M2 82

1

Elimination  of a between Eqs . (2.40) and (2.42) leads to the following pressure

distribution formula:

C
-!PC+YMY+YY+ 1 Y+ 1 	Y+ 1 °° 1	 4	 4	 262

(2.43 )
M; 

18



Combination of Eqs. (2.37) and (2.43) yields the following simplified form for the

19

effective body shape

2
M"° e l ^ YY+

P

P.

t YY

POO	 Y+ I

(2.44)

(b) Boundary Layer - Inviscid Interaction

High temperatures and low de-..;i ty exists in hypersonic boundary layers.

• These circumstances lead to large displacement thicknesses which in turn deflects

significantly We external inviscid flow. ( T his is ;negligible in subsonic and low

supersonic speeds) . If one : ncl udes the slope of displacement thickness in addition

to the geometrical body slope, the pressure distribution obtained in this manner

will be appi eciabl y different at hypersonic speeds from the pressure distribution

obtained on the actual geometrical body alone . Since the displacement thickness

is a function of the pressure distribution along the body and the pressure distribution

i s a functi on of the effecti ve body shape (i . e ., geometri cal body pl us di spl acement

thickness), there is an interaction between the boundary layer and the external

fl ow . Even if one avoids the leading  edge bluntness  by giving a sharp nose, the

large displacement thickness may induce vorti ci ty in the external inviscid field.

However, such a contribution is negligible in comparison with the boundary layer-

inviscid interaction at hypersonic speeds on flat plates and very slender bodi es[3].

Two main approaches to the strong interaction prob l em are avai l able.

One is Shen's assumption 1491, ► ater extended by Li and Nagamatsu 1501 , that

R.ryrr.. WMT.Wi: .p.. k.. ,:	..YA4,..ii^Mr'•..^11} 	..^	 : # ., _,. .r	 ,T .=:,.	 .^-:::.5.	 .. 1. ^..	 ^ r .::^!k.^7$+^wy zaly+r.:" ^M.^^ .	 'rs^	 xw,^: ^	 .aMiC .._ ... . ^	 ..._....a... -«._	 ........ _. ... .... ^_.. ,.... w4..-r . _. ^.v^^: r+r 4



the edge of the boundary layer is also the shock induced by the thick boundary

layer. The second approach is by Lees [51 and 523 in which the edge of the

boundary layer (or the displacement thickness) is .taken as the boundary layer

of a new body. The effect of these differences in concept are further discussed

by Lees C513. The second approach is used in the present analysis.

The effective body shape ;s derived in the last section as a function of the

pressure distribution. This effective body shape and the displacement thickness

can be related as

81 = 9 b j. d x	 (2.45)

To non -di mensi oni I i ze the displacement thickness and longitudinal

coordinate, let

uC
0 =	 5	 (2-46)

Av MM CO

and	 -	 A v

X =	 U00 
	 M3	 (2.47)

20

With these definitions, Eq.  (2.45) reduces to

8 =8 _ X	
d 

l 0 2M dX
(2.48)

Using Eq . (2.30), Eq . (2.45) can be rewritten as

*a 	 BIZ f.4
D	 4 M4\P

1

X
uCO 2 P1 u1

u

-

PC, m1 Go

2i
(7,r_)	 dX	 (2,49)

 0

-	 -	 aisA"uuew	 >Bri.:,;{,^e.. `:• -: si:.'1 .3	 ^ -- I'I11W	 9	 .	 eTC: _ _..	 .^.
` i+1'u^l•.^•R^y'.':.s+i+1 ...'yam•...:.



where

11 : I 1 + (Y - 1) M^ I2 - (1 + Y-
	 M^ ) I3

The integrals 1 1 , I 2 , and I3 have been defined in Eq . (2.30(a)).

Substi tuti on of Eq. (2.48) i nto Eq . (2.44) yi el ds

21

_3

moo 	 X d0	 2
°° b	

2 di	
YY+1

P 1/per - 1

p7	 Y+ 1

(2.50)

r	 *'

If Eq. (2 .50) is integrated with respect to X and the resulting A is

then eliminated by the use of Eq. (2.49), one obtains a single intoaral equation

i n the form

X4 S
	

p  _ 1	 P I/ 	 Y-1 dX

p	 u	 2M	 p	 p°° Y— _ 3_
°°	 _	 1	 =	 °'	 X

p 1	 u°°	 Y(Y+1) II 2	pl	 r 2i u 	 d X
- PC;(L 1 CC 3

X
r

X

	

2	 J - 8b 

d
-u NI„M	 31	 1	 G	 X

uGO	 II	 x	 2i u I
p l/p Qr-)	 u°°	 X3m

c.

1



SECTION III

SOLUTION OF BOUNDARY LAYER EQUATIONS

The solution of the boundary layer equations with appropriate boundary

conditions and boundary layer-i nvi sci d interaction is the main concern of recent

interest. The complexity of the problem is increased with the inclusion of the

effects of compressibility, adverse pressure gradient and heat transfer. Momentum

and energy equations (Eqs. 2.21 and 2.22) are, furthermore, coupled. The

solution of these equations is as hard to come by as any other problem of signi-

ficance iii fluid mechanics.

According to Prandtl , the velocity gradient is a rapidly decreasing function

across the boundary layer. It may be possible to represent the velocity gradient

with an exponential function. In the method of solution, the velocity in the

boundary layer is thus expressed as a definite integral of a rapidly decreasing

function. Foll owi ng Mek syn, the definite i r'tegral is evaluated by the method

of steepest descent which greatly simplifies the integration.

The main idea of the method is as follows: if the i. aegrand is a rapidly

decreasing function, the main contribution to the integral comes from the region

close to the stationary point of the i nteg r -id. In doing so, the partial differential

equati ons (i . e . , momentum and energy equati ons) are reduced to nonl i near total

differential equations which contain a M (i .e., a2f/c)t at 71 = 0) and b 

(i .e., a 
s 

at T1 = 0) as dependent variables. The dependent variables "a"

and "b" can be determined by using the boundary conditions at the edge of the

boundary layer. In the end, to balance the number of equation-,, and the number

22
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roll

of unknowns (i.e., to use the tangent wedge or tangent cone formula effectively),

the integrals 1 1 , 1 2 , and I3 which appear in the displacement thickness are

evaluated. This type of analysis is done separately for both ordinary point and

separation point regions.

Considerable amount of work in the anal ys4 Can be reduced if it is re-

stricted to a Prandtl number of uni ty. In thi s case, dropping the lost term, the

energy Eq. (2.22) becomes

a2' -- + f aS =29
a ,1 2	 aT1

a  of a S a f
^)g an -	 a 'n a  )

(3.1)

The momentum equation remains the same as before i.e -,

2

	

a3f + f a 2 f	 -A S + 1 -/of	
+2 9 

of 62  _ of a2 	 (3.2)
 )

a Tj 3 	 aT1 2 	 aTI ag ars	 69 a Tj2

Besides the boundary conditions menti oned earlier (Eqs • 2.26 and 2.27),

additional boundary condition at the separation point is

a2f	 =0	 (3.3)

and that a (9) is small near and downstream of the separation point. Hence, it

is necessary to carry the analysis separately for the flow ahead of separation and

for the flow near and downstream of separation.

To obtain the solution of Eqs . (3.1) and (3.2), one expands the modified

stream functi on f ( ; , I and the dimensionless enthalpy function S ( 9 , '1) in

a power series of ?1 as

....^».rMwa.........,.,..,.:.W^- ::..... .,.._.,......,...w^ ,:.... 	 ;.	 ..,_.:_	 .. ,.	 ..	 _	 7	 ._ :.	 _	 _.	 .. _	 __	 .......	 .._	 .._.. _ .. .fir	 ...,^+.,e^....,...

v



m

m = 2	 m 1

and
M

m M 0	 ml

where am and bm are functions of 9 only. The modified stream function f

(Eq . 3.4) satisfies the boundary conditions (Eq . 2.26) at the wa! I . Since the

momentum and energy equations are coupled, the coefficients a m and b  will

be coupled too.

Substitution of f ( 9, 71 ) , S ( 9 , rl) as well as their derivatives i oto

Eqs. (3.1) and (3.2) and equating equal powers of 11 on both sides of these

equations yields for these coefficients as

a2 = a ( g )

a3 = - A ( 1 + Sw)

a4 
a -nb

a5 = a2 ( 2A- 1)+ 2 Cc a
	 (3.6)

i
a6 = a ( 1 + S w ) (4n-b n 2 -4gA )

a7 = 8aAb-4A7(1+w)2+6n3(1+Sw)2-8aA2b

etc.,	 P
+29	 nba l -5Aab i -3abA ' +2nn ' (1+ w)2]

24
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I

and

b  s S  (boundary condition)

b  = b (9 )

b2 = 0

(3.7)

b3 = 0

b4 s - ab+2 g (2ab - ba )

b 5 = bA(1+ Sw)+2g 
C 

b 	 +^SO- 3Ab, ( i+ Sw)
J

etc.,

where primes denote differentiation with respect to ^ . These coefficients are

valid for the case of constant temperature, nonadiabotic walls. The assumption

of isothermal wall and Prondtl number of unity reduces considerable amounts of

algebra involved in the analysis. One can relax these assumptions by assigning

arbitrary Prandtl number and arbitrary surface temperature distribution without

introducing any undue difficulty. Moreover, these coefficients are applicable

for both ordi nary poi nt and separati on poi nt anal yses.

3.1 Ordinary Point

The major problem in the solution of boundary layer equations consists in

satisfying the boundary condition at infinity. The coefficients derived in the

previous section contain two unknown parameters i . e . , a (^) and b ( 9 ). They

can be determined from the boundary condition at infinity. Further analysis is

concerned with the development of equations which describe the boundary



(3.11) )
dTi

3 1

Am = 27 

.conditions at infinity. To do this, it will be necessary to integrate the modi fied

stream function f and to invert the resulting series.

Let
T 

a 	 f d n
0

(3.8)

3 	
am+2 In

M

i •e•/	 T 
a 71	 (m + 3) 1

ma0

Since T begins with 11 , the expression of 11 in T begins with 
T 1/3 . 

Hence,
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CO	 A

	

a E	 m
m a 0	 m + 1

or

	

d a
	

Am
Ms 

T (
m

3

+ 1 )
	 (3.9)

T (-M-j— d T	 (3.10)

Dividing Eq . (3.10) by T + and integrating the resulting expression using

Cauchy's residue theorem, the following result is obtained

	where i s	 -1 . The integrations are carried out three times in the T plane

to di spose of the fractional powers of T once in the T1 plane .

The complex variable analysis enables one to show that A i s the co-

.	 -1	 _(m+ 1	
M

efficient of	 i n the ex ansi on of T \ 3 ) . SinceP

- /m+

	

m	 3T-/M
+-3)1 = T1- (m+ 1) E	

am
 

+2 ^1	 (3-12)
M=0	

{m+3 !
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therefore, Am is the coefficient of TI m in the expression

m+1	 _(M+ l)

cm 	 _	 m +3 1	
(3.13)

M 0	 m 0

after expanding Eq. (3.13) in series form. The following equations are obtained
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for A
m

1/3

Ao  (6/a)

	

a3	 6 1l 5/3

A l s 36 la/
2

	

_ 3	
04	 3	 03A2 -10 2 + lr 3 -
a	 0

(3.14)

0	 7/3	 a a	 10/3A Q _ 4_ 5 6	 + 28 3	 4 (66	 _ 140
3	 7— 61 (7)	 -T "TT 5 1 a^	 8

3	 13/3
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1/3
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61 \ a /

2
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27 (-4 il-
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A ,^_Z (^1( 6 +6(.^1= 6 1 +6..4.15	 \ 81 / \ o	 ` 41 / 71	 a/ 	 (51

4	 2	 5	 2
C--S) -= -12(^=1	 -=1-12( 461	 a	 4! / 61	 o !	 51^	 41

5	 3	 6	 5	 7^a 
/	

o l (	 1	 a

Ca) +20 41	 \ 5! /	 6^41^`a^

• • • r • • • • • • . .

(a) Momentum Equation

Equation (3.2) is a nonlinear and nonhomogen eous partial differential

equation. Replacing the dependent variables f and S in the right-hand-side

of Eq. (3.2)uy the use of Eqs. (3.4) and (3.5) yields

28

	

3	 2a f + f a f

	

a 'n3	 a 11
W P (S, 't) (3.15)

where

b 11 
m	

a	 a	 n * m -2
E	

.^

P (^^ ^1 ) n - ^	 -= + 1- E	 E	 nn	
m m 1 r1

= 0	 m 1	 m=2 n=2

+ 2 
E	

an	 am	
71

n+m-2 _ E	 an

a	 n+m-2M	 TI	 (3.16)m-2



. ........^.,^.

Multiplying Eq. (3.15) by an integration factor, a T, where T is

defi nod i n Eq . (3.8) and i ntegrati ng wi th respect to t1 rasul is in

29

2 t1
^.. = exp (,. 's')	 a (9) +
a^

Pg,r#exp(T) d 11 1(3.17)

The appropriate conditions at the solid boundary are used to obtain the above

form .

To integrate Eq. (3.17), let

T	 B 11 m
^P	 a M+	 P (9, 01) exp (T ) d tj 	

rn

E	 _ m
m:0

(3.181

The coefficients 8  in Eq. (3.18) may be obtained by substituting Eqs. (3.4)

and (3.8) into Eq . (3.17) and equating equal powers of 01 on either side of Eq.

(3.17). The first six coefficients are listed below

B	 a
0

B 1 = -n(1+Sw)

B 2 = -bA

B3 = 2 (a n+ g a a)	 (3.19)

B4 = 6a a3 A +49a a3-CAO+Sw)

B5	 -bo n+6a2 n+8oa4n+69co4+49a3a3



-49a a4 -4abA-a f̂ A ( 1+ Sw)

Integration of Eq. (3.17) with respect to 11 yields the following rt-,ult:

tl

a c exp (- T) d	 d T	 (3.20)
J
0

To further ti mpl i fy the above Integral, lot

d 71	
- 2/3 42	 m/3

eP T	 T	 E	 dm T	 (3.21)

moo

or

d 11

-CP -	 -^-- d T O d	 ff d 	 w 3 (2 n i)d m 	 (3.22)

T
3 

(m + 1)	 m

Here, the integration is carried out in a manner as described in Subsection 3.1.

	

Therefore, dm is one-third of the coefficient of ?I	 in the expressi on

CP 
T 1/3 (m 1) expanded in ascending powers of ri , i . e . , d m is one-third

of the coefficient of 11 m 'in  the expression

2 	 1/3 (m + 1)	 B2 ,1 2	 83713
co* c l ri+ c2

 
71 + .	

Bo
+B1Tj+ 21
	 + 31 + ...

The first six coefficients of Eq. (3.21) are summarized below.

B	 - 1/3

0	 3	 0

In

hL
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c
-213 B - 2 B

1	 /3 o co
1

d 1 3 co

d2 = T	 _ B. c2 eo 2 + Bo e 1 eo - BI e 1 co	 B222 co 1

d3 a	 - 4 B	 c-7/3 + 28 B c 1 c 
C .0 

10/3_

	

3	 0 c3 0	 0	 2 0	 81

	

C13 	 c- 13/3
1 0 0

- 3 8 1 c co 7/3 •^ 9 
B 1 c 

1 co 1 C/3 _ 2 B c 1 c- 7/3
2	 ' 2	 0

+	 3 c" 4/3	 (3 , `;1)
6 o

d = 1 - 5- c B 
co
-8/3 + G c2 B c- 11/3 + 40 c c

4 3	 3 4 0 	 9 1 0 0	 9 1 3

B c 11/3 _ 2_ c2 
c B c 14/3 + 770 c4 B c- 17/3

	

0 0	 27	 1 2 0 0	 243 	 1 0 0

5 B c- 8/
's + 40 c c B c-11/3 _ 220 c 

3 B c- 14/3
3	 3 1 0	 1 2 1 0	 81^ 1	 1 0

5	 - 8/3	 10 2	 - 11/3	 5	 -8/3
6 c2 B2 c0 	 + 9 c 1 B2 c0 	 - 18 c 1 B3 c0

+B4 
Co
- 5/3

24 

r	

j	 ^
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d5 '- { - 2 c5 co + 6C 1 c4 co + 6c4 	c3 co - 12 c c3 cos

12c2c c-5 + 20c3 c c -6 +6c5 c-7 )B + (-2c c-3+3`22 1 0	 1 2 0	 1 0	 0	 4 0	 2

co + 6c,  c3 co - 12 c ^ c2 co + 5 c ^ co ) B 1 + (- 2 c3 co 3+

BB„
6c 1 c2 ca4 - 4 c cos ) Z+ (-2c  2	 oc

o + 3 c 1 co ) 6

_ B 4	 -3
12 '1 co

5 
Co

2

120 

Substituting Eq . (3.21) into Eq • (3.20) and extending t! upper limit  of integration

to infinity, one obtains boundary condition at 	 edge of the boundary layer as

a	 m=0
	 dm r (

 M+
	 1
	

(3.24)

where the symbol t stands for gamma function.

(b) Energy Equation

Equation (3.1) is a I i near, iionhemogeneous partial differential equation.

The procedure for the integration  of Eq. (3.1) is the some as described in Sub-

section 3,	 r

Substituting Eqs. (3.4) and (3.5) into the right-hand-side of Eq. (3.1)

yields

`	 ...	
w E.,..w.. :...<: -_ 	 _..--..:..vw«. . y._ ..	 ..... :.	 ..,,	 :r- .,..	 --..r•.	 _.«... -.jr..	 .....^..r..y..:._..;	 .»	 ... ......,	 .. ..... _.»	 -	 ., -	 --.,._.,....	 . - .. . .-^^!..:-tii.:tw,u.xci.+x^ ...
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aq	 a tj	 0
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where
I

. '^ = 2 S E E	 an	 b_m	 min-P	 1
e (	 )	 n=2 m=0 n- !	 m!

EE 	 m	 an 	 n+m-1-	 E
m=1 n=2	 M-	 n !

(3.25)

Using the some integrating factor and integrating Eq . (3.25), one obtains

71
ass11 = exp (m T) . b (g) + C exp (T ) P e (^. TI) d ri	 (3.26)

0

To facilitate further i ntegration, let, as before,

CP
O
e (9)"	 exp ( T ) P e	 E	 m(^ , ^1)d 71 =	 Xm	 ^m (3.27)S	 !

0
m=0

Substituting Eqs. (3.5) , (3.8) , and (3.27) into Eq. (3.26) and equating equal

powers of 71 on both sides results in the fol lowi ng definitions for ^n

'0 0

X 1 = 0

X 2 = 0

(3.28)
X3 = 29(2ab' - b o d

X4 = 29(3a3 b i - bo b' )

J
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X 
5 $ 04 

b + b6

. .	 . .

etc.,

After integrating once, Eq . (3.26) becomes

S (S, TI) _	 exp ( T) 
e 

d T d T + $w + b J exp (-T) -TT d T

O	 O	 (3.29)

Again, let

-=; T - 2/3 c D T m/3
CP e d T	 m=0	 m

where the coefficients D arem

DO =O

D 1 = 0

D2=0

D = X 3 c- 4/3
3	 18	 0

D - 1	 - 5 X c c- 8/3 + 
X4 c- 5/3 1

4	 3	 18	 3	 1 0	 24	 0	 -1

'	 X	 X
D5	 3 L 6 (- 2 c2 

co + 3 c 1 o	 2c)	 c 1 c0

52+ 2 co 1
. .. . . .
etc.,

(3.30)

(3.31)



The information needed for the evaluation of the second integral in Eq.

(3.29) has been made available in Subsection 3.1. After integration the result

35

obtained is given below.

J exp (- T)	 T d T = 3 E Am I' m-3+-1—

0 moo
(3.31(a))

where Am 's are defined in Eq . (3.14).

Therefore, using the boundary conditions for the enthalpy function S ,

Eq . (3.29) becomes

-1

b (g) _ _ Sw	 Dm r m3 1	 3 ECO Am r 3 1 (3.32)
m=0 	 m=0

Eqs. (3.24) and (3.32) are coupled together. They contain two unknown parameters

a (9) and b (9) and their derivatives. The solutions obtained and the transform-

ations given above are only valid within a finite radius of convergence of 71 . The

range of T1 in the solution has been extended t;.^ infinity because of the lack of

exact knowledge of the edge of W , boundary layer. For this reason, the series

expansions become divergent and 'hey have to be summed by Eul er's transformation

as shown in Section IV .

(c) Displacement Thickness

It is apparent from the above discussion that the Eqs. (3.24) and (3.32)

contain not only the unknown parameters a (9) and b (9) but also the pressure

gradient term A (9). If the pressure distribution is known for low speed flows

either by experiment or by i nvi sci d flow theory, it is a simple matter to determine

a



the unknowns "a" and 'b" from the two Eqs. (3.24) and (3.32). However,

this is not the case in hypersonic flow. Here, the presence of various interactions

(such as pressure interaction, vorti ci ty interaction, etc .,) adds another unknown

pressure gradient parameter n (9) , hence another equation is necessary to balance

the number of unknowns and the number of equations. This additional equation

could be either the tangent wedge formula for the two-dimensional case (or the

tangent cone formula for the axisymmetric case) or the use of the method of

characi eri sti cs. Since the tangent wedge formula is relatively simple and at the

some time provides enough accuracy For very slender bodies 13,391, this formula

has been used in this i nve,,Agati on .

The tangent wedge formula is derived in Section II (Eq. (2.51)). However,

Eqs. (2.51) and (2.49) contain three unknown integrals, defi Ned in Eq. (2.30(a)).

These integrals will raw be evaluated.

Substituting Eq. (3.17) and (3.18) into the definition of the integral I 1 ,

one obtains

36

1 1 ^

me

J

0

exp(- T)PdT 71d T
	

(3.33)

To simplify this integral, let

^P T 	
T- 2/3 

E D 1 m T 
m^3

m

With a procedure similar to that used in Subsection 3.1(a ), one obtains the

fol I owi ng for D 1m:



37

D1 = 1_ 8 c-2/3
1	 3 o o

D1 2 = 3 (-B0c1 c0 + B 1 co )

DI	 1-- B - 4. c c-7/3 + 14 c2c - 10/3N3	 3	 0	 3	 2 o	 9	 1 0

- 4 B c c-7/3+	 c-4/3
3 1 1 0	 2	 0

D 1 = - 1— B	 -(5/3 c - 8/3 + 40 c c c- 11/3 _ 220
4	 3	 0 	 3 co	 9	 1 2 o	 81

c3 c - 14/3+ B	 5 c C- 8/3 + 20
1 0	

l	
1 \^ 3 2 0	 9I

2 c- 11/3	 _ • 5 B c c - 8/3 + 3c	
)	 6	 2 1 0	 6

(3.34)
c- 5/3

0

D 1 = -= B (- 2 c4 co + 3 c2 co + 6 c 1 c3 co - 12 c
5	 3	 0

-5	 4	 61c2 c0	 + 5 c 1 co	 + 6 1 (-2	 -
c3 co

B
+bc 1 c2 co -4c^ o	 Zc 5 )'+^	 ( -2c2

B	 B
co + 3c co	 3 c 1 co + 24 cot

F^rs^. MY4 t• a:.>t _	 ..v.: uw-• ^r.^	 ^ ',	 R	 M	
>-^`.	 +rfX"^	 . N. M»r - <_rYyJw+:si.(wJnryvt.•	 ^vr	 wvlV, . ,. . _...	 . .



	+ 20	 c2 B a c 11/3

	

9	 1 0	 0 (3.33)
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r,

It is now straightforward matter to write down the final form of Eq. (3.33) as

i ' 1	 D1	 r1	
m	 ,(3.35)m=1

To evaluate the integral I2 , one may write

CO

I2 a	 exp (- T) cp aB= 71 d T d T	 (3-36)

0

For further simplification, let

ep -aa-f— 71	 a T - 2/3 0	 D 2 T m/3	 (3.37 )d	 m=2	 m

The following definitions for D2  are obtained by following the some procedure

as described in Subsection 3.1 '(a ).

D2 - B0 o c-12	 3	 o

D2 - 'o'03 - ' I c-4/3 - 4 B a c	 - 7/3
3	 6	 3	 0	 9	 c	 t co

	

D21	 B° 4 + B 1 a3 + B^ c - 5/3	 5 c4	 3	 6	 2	 2	 0	 3	 1

a
0 3+ B 1 a	 + B a c	 c 

8/3
	2 	 0	 2	 o

r
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D2 s 1	 8 a - 2 c3 co + 6c,  c2 co - 4c 1 c^5
5 T o

+ , 'o'03+ B a	 - 2c c-3 + 3c2 c-4 - 2c c- 3
2	 1	 2 0	 1 o	 1 0

B

!_+

	

(
04	B a	 B o
	 %0 5  
	

B 
1 04	 B a

6	 2	 2	 24

 -a

16 ) co

D2 I - B a	 - 7 c c-10/3 + 35	 c2 + 2 c c c- 13/3
6	 4 o	 2	 1 c3)co

_ 4552	 - Y6/3 + 1820 c4 c- 19/3]+ Br +B a
27 c 1 c2 .0	 243	 1 0	 2	 1

7- 10/3	 70	 - 13/3 _ 55 c3 c- 1 6/3 +
3 c3 co	 + 9 c 1 c2 co 	 81 1 0

4

	

B 
4 + BI 	 + 

B
20 - 7 c-10/3 + 35 c2 c-13/3

6	 2	 2	 r^2 o	 'T l o

7	 10/3 B= BB l
r 

+ B2a3 + 830 + 
8̂°7 6

r	
1203 c1 co	 24 + 6	 'LV

B 1 as	 B2a4	 B3°3	 ;4°	 -7/3

	

+ 24 +	
12+ 12-- + — 24-- co



I2 ' E D2m
ms2

(3.39)

Therefore, Eq . (3.36) reduces to

40

Substitution of Eqs. (3.26) and (3.27) into the definition of the integral

I3 leads to

I3	 S exp (- T) 
^^e 

11 d d T	 (3. J 0)

0

To simplify further, let

d 7i = T - 2/3 E	
D3	 T m/3	 ^'.^ .41rPe	 d 	 m=1	 m	 ,Z	 )

The coefficients Dam are obtained 'in  a similar way,

D3 = 1 X c 
-2/3

1	 3 o o

D3	 0 c c2
2	 3	 1 0

D3	 X0	 - 4 c c-7/3 + 14 c2 c- 10/3
3	 3	 3 2 0	 9 1 o

= 1	 _ 5	 _8/3	 40	 -11/3 _ 220 3D34	 3 Xo 	 3 c3 co	 +	 c 1 c2 c
o	 81 c 1

(3.42)

X
c-14/3 + 6
	 c

-5/3
0	 0

M

R'	 rr^ w+N. °. .a..m ...	 ..	 ... .. w..^.wr	 .i....	 v	 1 •.	 _r	
r	 r .	 .:M!=.. i«	 .. it	 tiMr.^.	 -^	 .hi .+.^Y . .	 w	 ..	 ..A.	 _	 .... ,.	 .	 ......	 G	 ..	 n.

i



w

G2 'o
w

+ 5C 1 co -

X39 	 Xo - 2 c4 co + 3 c co 41 6 c 1 c3 co - 12c
v

41

X3	
-3

3 c 1 c0
+ 

—
X
^
4— -2

Lei GO

Y V . . . .

Equatior, (3.40) now becomes

I3 ^ E Dam
	 (Ni)ms1

(3.43;

With the integrals I 1 , IL , 1
3 

evaluated, one can now make use of the

pressure di stributi on formula. The three unknowns a ( S ) , b ( 9 ) and A ( C )

can be determined by simultaneously solving Eqs • (3.24) and (3.32) and the

pressure distribution formula.

3.2 Separation Point

The difference between the separation point and ordinary point is the fact
2

ghat the value of a ( ) (i .e., 	
a 2
	

at 71 0 0 ) is small near and down-
all

stream of the separation point. Because of this separate analyses are required for

each region . The major difference between the ordinary point analysis and the

separation point analysis lies  i n the inversion of the series in order to integrate

the energy and momentum equations (i -a-, Eqs. (3.1) and (3.2) respectively),

the addi tai onal condition at the separation point is

62 
f

a'n2
00at71a0 (3.44)

.>h..	 ^	 1^aa.F.wwW^+„sw^"^^,'¢^ .. ter ,...	 y.:.:.-,.w.±...,.... ..e-. _ .. >......	 ,.	 . .,..	 .g,.	 •	 s.r+-.rF.a,;..	 ..:^.,, ...:caF.ruk..wr.aw^r.. 	 .. ^.



whence f (S r t1) starts with the term 7 i 3 .

Since the expressions will be applied to the flow downstream of separation,

lot	 11

	

F • S	 f d TI
	 (3.45)

0

or	
3

exp (- f) = exp - 6-. exp (- TS )

where
a371 4 	 a4 11 5	 a5 T6

S	 41	 51	 61

42

4s I £
nz0

an +3	 n
n+4 1 (3.46)

One can expand the exponential term in series as

3	 3	 2 6	 3 9
exp - 6 - s 1 - 6 + °- Z-_. - °.1294  + . .

(3.47)

Inverting the serves of Eq. (3.46) as described in Subsection 3. 1, one

arri ves at the fol I owi ng resul ts:

a'A S 	 (-M+ /E m—+-1- TS
ms0

(3.48)

where
( a3 l - 1/4

A S0 \ 24

- 3/2
^ - —=AS	 C—)

1	 240	 24



-7/4	 2	 - 11/4
AS	

'039 	 \ 4/	 `	 )2	 60	 2	 32 120 (7-:2T)
(3.49)

"2	 -3	o 	 a, l
	 (o
	

( a
	

( aA S3 _ 54 Cam) + 2 l 0^ \ 5 ^ \ 32 7̂ 2^i -^-

3	 -4

(^
\ 120	 C 24 )

AS	
5	 07	 03 '9/4 45	 °52

4	 4	 40320	 24	 32	 C 720 /L

aa4	 -13/4 - 585

+2C) C 	)	 C	 )120	 5040	 24	 128

	

2	 -17/4	 4	 -21/4

	

C
m̀il	 °5 ( °3)

	
9945	 4 °3

	

1 0/	 7	 f	 4! C2	 20	 24	 + b 14 (-1'0-20 	24

. . 3 . .

It is to be noted thar the coefficients "am " are already obtained in Sec. ion

III (see Eq. (3.6)). The coefficients AS  do not t;ontain the unknown parameter

a. ( 9 ) in the denominator . Thus, the singularity is avoided.

(a) Momentum Equation

The integration of the momentum Eq . (3.2) will remain the some up to the

development of Eq. (3.19) as in Subsection 3.1(a). Since there is difference be-

tween T and T S , the counterpart of Eq . (3.17) for the separation problem is

43

a 2f	 _	 _ a n + o r16	( 	 )

a^2	 1	 6	 72	
exp -T S

fi

(3.50)



After integrated once, Eq. (3.50) becomes

In 3	 2 6

S
-' S eXP (- T S ) ^P 1- °6 + a Z---... d T dT

dS 
0

(3.51)

For simplification, let

3	 02716 	-3.	 m	 m/4	 (3-52)d 71
6	 72	 d T S	 m=0	 m

Similar to the procedure used in the ordinary point analyses, one can

identify the coefficients dSm as

B0	
( a

3 - 1/4
	d5o	 4	 ` 24

a	

(74—)
a -3/2	 a-1/2

	dSl	 4 [2 ( 120 Bo 	 + B1r24^

-7/4	 2	 -11/4

dS a	 B -3 ^--5) a3} + 21 (T2-0  (--A2 	 4	 0	 4 720	 24	 32 	 24

( a l a -7/4 B	 Q
	

-3/4

4 B l \170 / ( 24 )+ 2 `24 ) 	j

-2	 -3

	

dS - B0 - a6
	 03 

+ 2 a4 l -= a3	3	 4	 5040	 24	 \ 120 / ^ 720	 24

3	 -4	 -2	 2	 -3
(_ 44	 3	 5	 3 +( -4 	 -3

120	 24	 4	 720 24	 120	 24

44

r
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B 2 	 a4	 a3 -2	 B3 _ aBo1 a3	 -1
8 120 24 +( 2—I(24)

-9/4	 2

dS ^' 1 B	 5	
a7	

°3^	 + 
45	

a 

J ((—) 24 4	 0	 4 40320 24	 32	 720

-13/4	 ?	 • 1//4 

t

	

C °4 1 ^ '01,^ 1	 (°3 ^	 _ 585 ('04 1	 05	 ^ °3
123 / '5'-M 	 \ 24	 128 TO 1 720	 24 

1048 ' 120 _^r
	

I + B I	 T T -0 47 4)
a	 -2i/a r 	-9/a

3315	 4 )	 3 )

	

-13/4	 ^ ° 3 '03 - 17/4
+ 45 ! °4 1	 °5 ( '03 1	 195 ` 4 l C 

16 T21S 72^ 24 1	- ^8 12^	 24

-9/4	 2	 -13/4

B2	 _ 5 °5 ^ 3	 + 45 { °4	 °3 1^-	 C2	 720	 24	 32 12^	 24

5	 /B3 _aBo	04 	 o 
-9/4 

B4	 all 1) 
a -5/4

4	 6	 120	 24	 4	 6	 24

. . . . . • .	 (3-53 )

If the upper l imit of integration is extended to infinity, Eq . (3.51) becomes

a ( g . co ) = E	 dSm r	 m- 4 = 1	 (3.54)
rr-0

therefore, this is the boundary condition at the edge d the boundary layer near and

downstream of the separation point.

11.,	 .-:	 ._	
..	
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(b) Energy Equation

Following the some procedure as used in Subsection 3.1 (b) up to the

development of Zq . (3.28), Eq . (3.1) becomes

46

a	 a e 
-TS	

1 _ 13 
+ a2n6 _	

rp S6	 - 72	 .	 e

wher,^ CPS = b + E	 -,gym
e	 m=0	 m I

(3.55)

and m are defined in Eq. (3.28).

It is to be noted that the above equation is obtained after replacing the

expression for T in Eq . (3.26) with an equivalent definition from Eqs . (3.45)

and (3-47).

Integrating onc:, Eq. (3.55) becomes

3	 26
S (^. ^1) ' S ex  (- I' S) R I - b + 2 - . . . cp Se )] a

d.TT-
. d TS

a	 $

(3.56)

To simplify the integral in Eq. (3.56), let

(1 - = 3̂	a2-^6 -	 dn a -3/4 cc
	 m/4

^Se \	 6 +	 72	 d T	 T	 £ DSm T	 (3-57)
S	 m=0

With a procedure similar to that used in Subsection 3.1 (a), one obtains

the coefficients DS	 asm

DS	
a3 -1/4

o b/4	 24

RM^++y t.YWMlKR+IM-. x;	 '..;.:.Y ^++YTy'.'. +AY	
r	

, .	 •



1 ( a3-3/2

DS 1 '^- b fg(_-
4

_120 J	 ^

, b - 3	 05	 03 -7/4 21_a4 2 a3 - 11/4
DS2	 4	 4 0 720	 24	 32	 120 C 4—)

-2	 -3

D53 x [ 4	 5040 ^ 24) 4-2 (TT^C ^ ^ 720 ^ 24^	 -

a4 3 a3 4l 	;t3 - ab	 03 1
120 ^ 'L4^ J+ ( 24	 (— 24

-9/4	 2
a	 a 

DS4 = -4 6	 4 ^4^^ ^ 24^	 + 32 
( _

720
0 )

 +

	

-ia/a	 2	 -17/4
585 	 04 )a 403

60 ^ 5040	 ^ 24^	 J	 128 ` 120 ( 72-0 l ` 24 l

a 4 ^	 -214	 X 

3

- ob l a	 a -9/43)
+ 2048 ^ 120 ^ 24)	 4 (  6 / 120 ^ 24

-5/4

+	 24 ` 24) 	 (3.58)

.	 . . . . .

If the upper I i mi t of i ntegrati on i s extended to i nfi ni ty, Eq . (3.56) reduces

47

tc,
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S (t, °°)	 E	
DSm r Cm 4	 0

mU0
(3.59)

This is the boundary condition for the enthalpy function at the edge of the boundary

layer.

(c) Displacement Thickness

The main task here is to develop the expressions for the integrals I I

I2 , and I3 . Since the procedure is essentially the some as that described in

Subsection 3.1 (c), the definition of these integrals and the end results are

given below .

I	 --

CO	 3

 exp ( - T ) cp ( 1- —°TI + °-- --. .ri n dT1	 S	 `	 6	 72	 d TS 	S (3.60)

or

I1
CO

 E	 DSIm	
4M=I

wi°,ere	 - 1/2
DS1 ^ B° 	 3,

/1	 4 \ 24 

p51 2 a 4 [ 4 \ 120/ Bo (—i-4 / -7/4+ B 1 \ 24 J 3/4^

DS1 - I	 B	
a5 

(
a3 -2 (' a4 2 a3	 -3

3 .. 4	 0	 720 ` 24	 + ` 1 0 k7—24

-B ^ ( i20^ (2
-2 -IB2 a3

+2c2^
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'0
	

_9/4

DS1 4 = ^ Bo	 4 C 6 ) C 3 / * 45 C o4 /
Z^-/	 IT X32

-13/4	 3	 -17/4
( °5	 °3 1	 _ 1

2i
95 (°4	 °3	 + B

720 / (4	 128 ` 120 C--)24	 1

	- 9/4	 2	 -13/4
5 C^ ( °3	 +45 

^W4 ) 
u3

4	720 C-2T 3 CC l2	 24 /

a 	
_9/4 B 08

o
	-5/4

- =B w (-%
2-) 
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The integrals I j It IZ , and I3 are expressed in terms of the same unknowns

a (S ) , b (9) and A (S) . These unknowns can be determined by simultonecxisly

solving Eqs. (3.54) and (3.59) and the pressure distribution formula.
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SECTION IV

NUMERICAL SOLUTIONS FOR A FLAT PLATE

It has been recognized for a I ong time that boundary layer theory is in-

adequate in the immediate neighborhood of the sharp leading edge of a flat plate.

Almost two decades ago, Becker 1531 drew interest to this problem when he pub-
4

I i shed data showing the surface pressure much above the predictions of compress-

ible boundary layer theory.

Very few revi ews of the probl em exi st . Hayes and Probstei n C31 gave a

comprehensive review of the i nvi sci d-viscous interaction phenomena. Later,

Jain and Li [543 reviewed the departures that occur from strong interaction theory,

both in experimental and theoretical terms. Recently, Pon and Probstein 1553

briefly reviewed the entire problem of the viscous interaction for al l the flow

regimes shown in Fig. I. Additionally, Charwat 1563 has given a brief summary

of near free molecule flow problems.

The shock angles indicate that, for Rankine-Hugoniot conditions, the

pressure should continue to rise as the leading  edge is approached, provided

the pressure does not vary with the coordinate normal to the body surface. This

is contradicted by pressure measurements which show a slight drop near the leading

edge. Therefore, the flow near the leading edge does not have the Rankine-

Hugoniot shock-layer structure.

To establish the region of validity of the present analysis, the flow Field

classification and the available literature  are discussed in Subsection 1. The
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in Subsection 2. Numerical results for various problems of the present day

i nteresr are given in Subsections 3, 4, and 5•

4.1 Classificction of Flow Field

Hypersonic flow over a dander body with a sharp loading  edge provided

a challenging physical example of transition from microscopic kinetic theory to

macroscopic, continuum gosdynamics. The general flow models used in the

presently available analytical treatments of the sharp leading  edge problem are

discussed below by dividing the flow field into several regions (Fig. 1). For

downstream on a flat plate immersed in a hypersonic flow, the boundary layer

phenomena are adequately described by compressible boundary layer theory.

Upstream of this, towards the leading  edge of the plate, the weak interaction

region is encountered 13, 57 through 631. Here the viscous layer causes a per-

turbation of the i nvi sci d flow field because of the Effect of the boundary layer

displacement . In that case, although surface pressures and skin friction are

affected, coupling between shock and boundary layer has not become significant.

Upstream of this region, there is a strong interaction region 121, 22, 51,

64 through 711. Here, the developments of both i nvi sci d and viscous flows are

coupled . 
I 
The distinctions between the strong and weak interaction regions are

based on the relative importance of the effects of the shock strength and of the

boundary layer displacement. In both regions, the shock wave is assumed to be

thin and an i nvi sci d region separates the shock from the outer edge of the

boundary layer. A tabulated comparison of the various theoretical analyses

applicable to the strong interaction region are given in Moul i c and Masl ach 1721.

The results of the strong interaction solutions apply in general for values of the
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interaction parameter X much greater than unity. On the other hand, the

results of the weak interaction solutions are applicable for X much less than

unity. There is a transition region in between the strong and weak interaction

regions. Typical analytical results are plotted in Fig. 2. From this figure, it

is clear that bridging the gap between these two asymptotic solutions is not an

easy task . A regime exists upstream of the strong interaction in which there is

present strong interaction between boundary layer and i nv i sci d flow in addition

to slip conditions at the body surface . It is assumed that there is still a distinct

i nvi sci d layer [ 73 through 771 separating the thin shock wave and the boundary

layer, but the significant rarefaction phenomenon accounting for departures

from viscous interaction theory is assumed to be velocity slip and temperature

jump at the wall . The next region upstrearn is the viscous layer region L45, 78

through 821, which is characterized by the merge of the thin shock wave with a

fully developed viscous shock layer. In this region, the boundary layer is

assumed to extend from the plate to the downstrearn surface of the shock layer.

The next region upstream of the viscous layer is the merged layer 155,

83 through 861. In this merged region, the shock wave is still merged with the

completely viscous shock layer, but the shock is so thick that the jump conditions

across the shock must be modified. McCroskey, Bogdonoff, and McDougal [901

have observed large reductions in the density ratio in the merged regime as the

leading  edga is approached. Thi., implies reduced pressure immediately behind

the slick, even though the shock angle is increasing. This may indicate that the

shock structure is the dominant mechanism upstream of the strong interaction

regime.
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Upstream of the merged layer, molecular treatments of the flow are

encountered in the near-free (56, 91 through 951 and free molecule fli..v regions

G3, 46, 63, 96 through 981 However, recent experiments 146, 89, 993 cast doubt

on the existence of a free molecular flow region.

It is generally recognized that strong interaction theory fails to predict

the behavior of the flow very near the l oading  edge. The determination of the

actual point of departure from strong interaction was considered by Becker and

Boylan 1463. They indicate that the strong interaction theory appears to fail in

the range 0.1 S Vm s 0.3 as suggested by Talbot 1473. They also indicate that

the onset of merging of shock and boundary layer corresponds to initial departures

of pi / pm from strong interaction theory. This has been observed at V. ^ 0.15.

Since the viscous interaction parameter X is equal to the product of the

w
square of free stream Mach number and the rarefaction parameter V, , the

strong influence of Mach number on the initial departure from strong interaction

theory can be obtained in terms of X as 15 and 93.75 for Mach numbers 10 and

25 respecti vel y i f V. = 0.15. Fol I owi ng thi s, i f the cri teri on for strong i nter-

acti on is X z 10, then strong interaction will not exist until M C, k 8.  There-

fore, for lower Mach numbers, the merged layer regime may directly extend to the

weak interaction regime.

4.2 Numerical Scheme;

The equations which are to be solved numericall y are summarized here

for convenient reference. They are taken from Section III, and are specialized

for a flat plate.
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where dm, Dm and II are defined in Section III. Further simplifications can

be foreseen from the following isentropic relationship:

Y- 1Poo

Y
21

1 + (4.4)uW	 Y= Ma
2	 CO

For M. = 10, Y = 1. 4, a maximum pressure ratio (p, /p. ) of 11 may exist

for on adiabatic plate. Therefore, the maximum error in assuming ul opproxirrarely

equal to u. is about 2.5% at the leading  edge and the error approaches zero

the downstream .

For convenience, lot in Eq . (4.3)
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(4.6)

The assumption of ul ms um is justified because of the approximate re-

presentation of i nvi sci d pressure distribution by the tangent wedge formula .

Equations (4.1), (4.2), and (4.6) implicitly contain three unknowns,

namely, a, b, and n as well as their duri vati ves. These equations, containing

highly divergent series, are not only nonlinear but also are coupled. There is

no direct way of solving them with any existing technique. Therefore, one has

to depend on an iteration scheme .

The definition of n is rewritten in terms of the new coordinate z in

Appendix B - Similarly, the following relations are specialized for a flat plate

as functions of z.

z
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The usual approaches to the solution of a set of nonlinear differential

equations are either to integrate them numerically by Runge-Kutto integration

technique, or to linearize  the equations by Taylor's series expansion and then

solve the linearized  set by standard methods such as subdomai n method (1003

or Pads approximation [1011. However, these methods are not feasible for the

above set of equations.

It is important to examine the series involved before applying any method

for the solution of the equations. This can be done easily by neglecting the

primed quantities in the first attempt. A typical series obtained in the solution

of these equati ons i s gi von bel ow .

1.5341 - 1.1829 + 0.0105 + 0.7974 + 0.2694 + .. .

The series is divergent. One has to apply the Eul er transformation to sum these

sari es, the procedure of whi ch i s gi van i n Appendix C . As expiai nod there, the

Euler transformation should be applied in such a way that the best convergence

and the least lost term is obtained. One can obtain the following form after

appl yi ng the Eul er transformation to the above series beginning with the second

term .

1.5341 - 0.5914 - 0.2931 - 0.0456 + 0.0944 + .. .

Since the series is still divergent, (.,no can obtain the fol-i owi ng form by

applying the Eul er ►ransformati on to the last two terms.

1.5341 - 0.5914 - 0.2931 - 0.0228 + 0.0122 + .. .

Now the series looks reasonably convergent. The experience here confirms the

..77 .^,	 .......	 .. a,.^...;..:	 .



observation of Meksyn 1357 that it is not advisable to apply Euler transformation

more than twice• The reason is that the convergence rate decreases as more

Euler transformations are applied. Therefore, it is better to use as few trans-

formations as possible. There is no unique way of summing these series. They

differ slightly from one type of transformation to another. The type of trans-

formation to be employed should be decided by trial and error in such a way that

the best convergence and the least lost term requirement will be met for the some

number of tronsformations

Fortunately, the first three terms in the series expressions (4.1), (4.2)

as well as in the integrals I 1 , I2, and 13 do not contain any derivatives. The

next three terms in all these expressions contain only first derivatives. Most of

the contribution in summing these series comes from the first few terms. Therefore,

this present method has the advantage over the methods of finite difference in

that even if a slight error is introduced into the lost few terms by a finite difference

representation, it will not significantly alter the net result.

Besides Meksyn, Heyday and Bowles [102,1031 investigated the solution

of equations for stagnation point flows by using different number of terms. They

concluded that the results obtained by using more than five terms differed little

from the results using only five terms. However, Meksyn concluded that at

least seven terms should be used for flows near the separation point. Since the

numerical solutions presented in this study are applicable to a flat plate, six

terms are retained in Eqs. (4.1) and (4.2). Five terms are used for the integrals

j i g, 1 2 , and 13.
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The expression for TI contains three quantities. The second and third

quantities are directly proportional N the square of Mach number. Since the

analysis presented here is for hypersonic flow, it is possible to drop the first

term (i . • . , 1 1 ) without I ass of much accuracy.

Similarity solutions are the exact solutions for a physical problem at the

stagnation point. Lees [104] obtained the pressure gradient parameter for similar

hypersonic boundary layers as

-Y1A= YY 1	 (4.^`>

This is used for starting the numerical computations near to the leading edge.

Iteration schemes for obtaining values for the three unknowns (i .e., a,

b, and A or p. /pl ) wi I I be described bel ow . Because of the nonl i neari ty of

the equations, and the questions of convergence of the i tercrti on scheme employed,

it should be emphasized that no hard and fast rules can be laid down for the

establishment of stable results.

Equation (4.6) is an implicit integral equation for the pressure ratio.

An iterative scheme for its solution follows. An approximate value for the pressure

ratio on the right hand side of Eq . (4.6) will be assumed and a new value will

be computed by performing the two integrations numerically. The new value

will be used in the i ntegrands and the procedure will be repeated until the

assumed and the calculated results agree within the tolerance limits set up. The

results show that only three iterations are required for three digit accuracy. To

start the iteration  process, the initial estimate for p% / p. from strong interaction

theory may be used. The pressure ratio i 4 expanded into asymptotic series in
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terns of the viscous interaction parameter for the leading edge strong interaction
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region as

-N- s	X + bsPte,
(4.11)

The coefficients of and b, can be obtained by substituting Eq. (a.11)

into Eq . (4.6) and equating equal powers of X on either side, resulting

of i
2V2— 

V 	 (Y - 1) II

and
	

(4.12)

bl Z 2 3Y+ 1
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To obtain an initial estimate for the iteration process, nne begins with

the value of II determined by Eq . (4.10) . The value of II thus determined yields

a value for al from Eq . (4.12) which, in turn, gives an initial estimate for pl/p.

from Eq. (4.11). For the calculations of the other quantities needed, one first

drops all the primed quantities in their series representation (i -a-,  neglecting their

9 dependence in the formulation), what remains are the similarity results for the

quantities concerned .

Equation (4.2) is an implicit equation for the evaluation of the parameter

b. The iteration scheme operates on the same principle just described. Here

also, an initial estimate of b 4 needed. This can be set equal to zero. The

result converges to the desired accuracy in three or four iterations. The series

in the denominator of the right-hand-side of Eq. (4.2) converges without the



need of the Eul or transf ormati an . However, for extremel y col d wal I condi ti ons,

the Eul er transformation may be desirable.

Mueller's iterative technique is used to find the parameter a ( S ) from

Eq. (4.1). This is described in detail in Appendix D. The well known Newton-

Raphson method is not feasible for the type of Eq. (4.1) since it is highly divergent.

The analytical or numerical di fferenti ate on with respect to the unknown parameter

a ( S ) is necessary in the case of Newton-Rophson method. For Mueller's

iterative technique, one has to specify the range of the unknown parameter a (9).

The boundaries of this range should be specified in such a way that they satisfy

the requirement mentioned in Appendix D. The results converge in about five

iterations.

The procedure used in the solution of Eqs. (4.1), (4.2), and (4.6) is

summnriwed below:

(1) Assume that the pressure gro-dent parameter  (given by Eq. (4.10)

remains constant over the entire body.

(2) Calculate II from similarity solutions (i .e., by neglecting the primed

quanti ti es a', b', etc . , )

(3) Find the pressure distribution from Eq. (4.6).

(4) Determine the pressure gradient parameter and its derivative from

Eqs. (4.7) and (4.8) re..spectively.

(5) Mueller's iterative technique determines a certain value for the

unknown parameter a (9). Then, obtain the parameter b (S ) from Eq. (4.2)

by applying information already obtained.

(6) Check whether or not the obtained parameters a ( 9 ), b ( 9), and
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A( g ) satisfy Eq. (4.1).

(77 ) If Eq . (4.1) is not satisfied, repeat steps (5) and (6) until the results

converge within ,-he stated limi ts .

(8) Re-calculate II .

(9) Repeat the steps (3) through (8) for every station along the entire

body .

(10) Repeat the steps (3) through (9) using local values of n and II for

the entire body. This repetition should continue until the pressure distribution

on the body converges to the value in the previous iteration. The results show

that three iterations are adequate for third digit accuracy.

Once the unknown parameters a ( g ), b ( g ), and A ( g ) are determined,

it is a straight forward matter to obtain the boundary layer parameters. These

are summarized below for a flat plate in terms of the new variables.

Modified displacement thickness:

Y
Pl	 u	 i

M1 d '^ ^2 --^- _^ II o (p^ /pao) U. dzUCCPi
(4.23)

Because	 aWUW

T  _ C 	 2

Eq . (2.34) can be written in terms of skin friction coefficient as

a
M3 r
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Similarly, introducing the heat transfer coefficient

-Qw :Ch Cm u.( ho- hw)
	

(4-16)

Eq. (2.37) becomes

M! 	 P, ul	 - 1	 b M
°° h	 PW	 uca	 Pr S	 z	 (4.17)

w 
	 1— ul dz

o Poo	 u^

4.3 Cold Plate

The numerical results are calculated for various boundary conditions at

the wall and di fferen* specific heat ratios. before accepting the results obtained

from the above procedure, one should check for two things: The first one is the

effect of the initial starting location. There are two possible approaches for this

problem. One approach is to use the experimental results or analytical solutions

at the initial l ocation.  The other alternative is to start arbitrarily at different

locations close to the leading  edge by using known si mi l ari tv solutions. Fig. 3

shows the results of such a process. Even though the curves start entirely

differently near the leading  edge (large values of X), they merge into a single

curve very rapidly as X decreases. One should not consider the results valid

beyond the point where the curves depart from each other significantly.

The second one is to check the validity of comiergence of the iteration

scheme described under step (10). The pressure distribution calculated for each

effective body shape is shown in Fig. 4. The second iteration data and third

iteration data merged into a single curve, thus the convergence is satisfactory.
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The behavior of the parameter a (9) versus X is shown in Fig . 5 for

T, / T,, ^ 0.15. The parameter remains essentially constant for a wide range

of X at the leading edge. This implies the validity of the simi l arity solutions

at the leading  edge . For X less than 20, the parameter drops si gni fi cantl y,

implying the need either of a local simi larity approach, or of a nonsi mi I ur

approach.

The variation of the pressure gradient parameter is shown in Fig. 6. This

parameter exhibits a trend similar to that of parameter a. However, the pressure

gradient parow wr drops faster in the weak i nters, --ti on region. The parameter

b is pl otted i nr i i g. 7. Compared to the other two parameters, this parameter

varies very slowly along the body. However, the pattern remains the some as the

other two parameters.

The pressure distribution is shown in Fig . 8. The experimental results

from Hall and Golian [105] are also plotted on the some graph. The agreement

with experimental results is better in the weak interaction and in the transition

regions than in the strong interaction region. The similar solutions of Li and

Nagamatsu and the exact solution of Bl attner are also included here for comparison

purposes. The pressure distribution obtained in the present work i's somewhat

higher than the above mentioned available theoretical and experimental results.

The reason for this difference may be due to the fact that only five terms are

considered in the calculation of displacement thickness. For very cold and very

hot plates, the use of more than five terms is desirable.

The distribution of the skin friction coefficient is shown in Fig. 4.

Bl attner `s solution and the zeroth order strong interaction solution are i ncluded for
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comparison purposes. Since the pressure distribution calculated in the present

work is slightly higher, the predicted skin friction coefficient, is also s.' ightl y

higher as expecied from Eq. (4.15). The heat transfer distribution is shown in

Fig . 10. The experimental resu) is of Hal I and Gol ion 11051 and some other

theoretical results are shown. The agreement is satisfactory.

It may be noted that thv experimental data is higher than the present

result even though the predicted pressure distribution is slightly higher. The

reason is as follows. Equation (4.17) indicates that the heat transfer coefficient

is proportional to the pi essure distribution but inversely proportional to the

Prandtl number. It is widely accepted that the Prandtl number for real gases is

slightly less than unity. For example, the Prandtl number may be taken as 0.72

for air. The Prandtl number is assumed as unity in the F-esent analysis. The

experimental data most probably represent the case where the Prandtl number is

less than unity. Therefore, the predicted heat transfer distribution is considered

as slightly higher than the available data and analytical results.

The dimensionless displacement thickness is shown in Fig. 11. There is

no experimental data available . The approximate equations derived by Cox and

Crabtree [1061 (chapters 7 and 8) are used for the purpose of comparison for both

weak and strong interaction regions as applicable. To interpret these equations

in terms of dimensionless displacement thickness, the following relation is used:
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I 1, I 2 , and I 3 and comparison is made with on) 7 asymptotic solutions, the

agreement is found to be satisfactory.

4.4 Adiabatic Plate

Since there is no heat transfer at the body surface, the energy equation

is dropped from the governing set of equations. The number of unknowns is re-

duced to two (namely a ( ^ ) and A ( § ) or p i ) as compared to three in the

previous  case . The procedure in solving these equations remains the same. A

considerable amount of simplification is realized, however. The simplified

equations for the flat plate can be obtained by assuming b (; ) as zero.

The pressure distribution is shown in Fig . 12. Excellent agreement is

obtained with Kendal and Bertram's 161,621 experimental results. Moul i c and

Maslach 1721 also conducted experiments in the range of Mach numbers from 5

to 6. The wall-to-stagnation absolute temperature ratio was maintained within

the limits  of 0.93 to 0.98. These results are also shown in the some figure. The

data covers the region where the hypersonic interaction parameter is greater than

3.5. Since the strong interaction region may not exist for such a low Mach

number, the results maybe interpreted as satisfactory. The zeroth order strong

interaction solution and B I attner's numerical solution are also included in this

figure. The overall agreement is good.

The skin friction distribution is shown in Fig. 13. The agreement with

Li and Nagamatsu zeroth order strong interaction solution is satisfactory. Since

the displacement thickness is higher than in the cold plate case, a sliding scale

is introduced to represent both weak and strong interaction regions on the some

graph. The present result is compared with the solution of Cox and Crabtree [ 106].
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4.5 Heated Plate

Experimental measurements of surface pressure and heat transfer distributions

are fairly numerous in the literature  for adiabatic and cold flat pl otes . However,

such measurements are not, to the author's knowledge, available for a heated flat

plate. This is probably due to difficulties in simulating the phenomena • There

are, however, quite a few practical situations where the body temperature is

much higher than the stagnation temperature of the flow field. One such situation

is obviously the final phase of a re-entry vehicle. BI ottner [391 could not calculate

the heated plate example because of the i,a(,k of similarity profiles for this case or the

initial station. However, this case is investigated with the present approach.

The equations and the procedure essentially remain the some as for the

cold flat plate. The numerical example is done for the case .)f wall -to-stagnation

temperature ratio of 2.0. The results are shown in Figs. 15 through 18 as pressure.

skin friction coefficient, heat transfer coefficient, and displacement thickness

distributions. In each of these figures, the results are given for a monoatomi c

gas and a diatomic gas when the condition of the plate is heated ( T,,/r o = 2. 0),

cooled Rw A = . 15) or adiabatic (T,/To = 1 .0).

The pressure, skin friction and heat transfer coefficients, and displacement

thickness ore more sensitive to heating than cooling . The effect of cooling the

surface reduces these boundary layer parameters whereas the opposite effect is

true of heating . Similarly, cooling of the surface reduces the strong interaction

region as well as the strong interaction effects between the shock wave and the

boundary layer and has the greatest effect near the leading edge.. The results

indicate that a monootomi c gas increases the boundary layer parameters significantly

in comparison to a diatomic gas.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

The compressible laminar boundary layer equations are solved by the

method of steepest descent. The external pressure distribution is calculated

by tangent-wedge formula for two dimensional bodies. Since the hypersonic

boundary I ayer-i nvi sci d interaction is coupled to the solution of boundary I dyer

equations, three resulting coupled equations are solved by an iterative process.

I 1 s, _ 411u l ysi s presented in this study concerns the case of an isothermal

body and ^ : Prandtl number of unity. To check the validity of the analysis,

numerical i o ,,ul is are computed for a flat pl ate. The re ►ul is are in good agree-

ment with the available theorei s and experimental results. It is found that the

convergence rate of the series for displacement thickness is slower than the

series for the velocity and enthalpy at the edge of the boundary layer. Since

only five terms are used in the calculation of displacement thickness integrals,

the resul is are fr`und to be satisfactory . However, use of more t! nn fi ve terms

may yield much better results.

Occasionally,  there exists a situation where there is no unique way of

summing these series. With the exception of this restriction, the method is a

powerful analytical tool, that is easy to apply. Additional study is needed to

understand deeper into the convergence of the series.

The method of solution is not restricted to a particular fluid property or a

particular body. The assumption cf a Prandtl number of unity and of an isothermal

body serve only to reduce considerable amount of algebra involved in the analysis.
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One can relax these assumptions easily without any change in the present method

of approach. The simplicity of the method permits the solution to be obtained on

small computers such as IBM 1130.

The numerical example given in Section IV represents the flat pi ate in

hypersonic flow. The prc- sent method of approach is applicable even to wedges,

compression surfaces or oxi symmctri cal slender bodies. Analogous to the use of

tangent-wedge formula for two dimensional bodies, one may use tangent-cone

formula for symmetrical bodies. However, the use of boundary lay(-r-inviscid

interaction or neglecting the other interactions  should be justified .
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FIG. 3 EFFECT OF INITIAL LOCATION
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APPENDIX A

GENERAL PROCEDURE FOR THE EVALUATION OF THE INTEGRAL

BY THE METHOD OF STEEPEST DESCENT

The integrals are of the form

exp (- F (ti)) CP (t1) d7l
0

where cp (TI ) i s sl owl y varyi ng and F (71) i s a posi ti ve functi on wi th a stati unary

poi nt at TI 0 0, where 71 i s posi ti ve .

The method of steepest descent, or ,,oddl e-poi nt method, is due to Deb ye

[ 107] who applied it to the evaluation of Bessel functions of large order . A

detailed account of it is given in Watson [108]. This is exclusively applied fry ►

boundary layers by Mleksyn [27 through 351Merk [109], and Hayday and Bowles

[ 102,103].

To evaluate the integral,. put

F ( 71) = T
	

(A.1)

Invert the expression (A-1) (i -e-, wr; re 71 as a function of T ) and express the

i ntegrand in terms of T

The ful-- ion F (71 ' is uwai I y multiplied by a large positive parameter,

and the series expanded in inverse powers of this parameter. In boundary layers,

the large parameter is unity. Therefore, the behavior of F ( r1) and cp ( 11 ) is

very important. In the majority of cases, the expressions obtained are very

divergent; they are then summed by Euler `s transformation.
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APPENDIX B

DERIVATION OF n

The definition of A from Eq. (2.26) can be rewritten as

c
A C 29 

dg	
In	 c u 1	 (B.1)

1

Using Eqs . (2.10) and (2.19), n becomes

2i

ul r P1

^ ^ Y.r d^.^ 	um L Pm ^ + 2 ^ dui
Ydx	 0	 r	 2i	 ul 7d ,^	 (B -2)

u. L

Assuming i sentropi c, perfect gas low for the flow external to the boundary layer,

one can obtji n the fol I owi ng relation .

102

c 2 + Y- 1 u2 =	 c 2 +	 1 u21	 2	 1	 °°	 2	 °°

or

2_ 2	 2 Y- 1 2_ c 2 ,pii
u	 c1	 Y_ 1	 m +	 2	 u°°	 °'	

PCO

(B -3)

Y- 1

Differentiating Eq . (B .3) with respect to 9 and further simplification results in

1	 dul =	 1	 1	 d (Pw/P 1)

u 1	 d^	 YM2	 p^^p 1	d9	
(6.4)

1

IL_	 --



Therefore, Eq . (B .2) becomes

n = Y—w I + --2

Y	 YM1

2i
u I r
	 P1	 dxP6	 — —

d 	 L	 P^,
dx	 p	 u 1	 r 2i

um	 L
(B-5)
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Introducing further transformation

.z

	

	
1 
2 (X is defined	 in Eq. (2.48)

X

Equation (B .5) reduces to

n = -Y—I + — 2	 d	 P./pY	 Y M 2	 dz	 1
1

(B -6)

2i

u I 
r 

PI 
dz

um	L	 P.11	 (B -7)
U 	 r 2i
u.	 L

It i s important to note that the second term in Eq . (B .7) contributes very I i ttl e

n hypersonic flow and thus further simplification can be foreseen for high speed

flows.
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APPENDIX C

EULER'S TRANSFORMATION

The transformation is due to Euler [110] who used it to sum apparently

divergent series. It has been extensively applied by Meksyn in his new method

in boundary layer theory.

According to Eul er, the sum of a divergent series is the finite numerical

value of the c ^nvergent expression from which the divergent series is derived .

First, the general form of Eul er's transformation will be given. Suppose the

seri as
n+1

E	 R
n 

X	 (C.1)

n=0

converges to S (X) for suffi ci entl y smal I values of X . Let

Y	
X

1 +X

or
	

(C .2)

X	
Y

1- -=Y

Substituting (C-2) instead of X in the series (C. 1) and expanding it in

powers of Y, one can obtain

S(X)=E	 R Yp+1 (1_Y)'(P+1)

P=O	 P

Si nce

(C.3)
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t I -Y)-Y)_ (P+
	

_ I + ( 1+P) Y + (P+1 ) (p+2) Y2 + (P+1 ) (P+2) (p+3) Y3+...
21	 31

•ti.

(C.4)CO	 p + m Ym_

E 0	 m

Therefore,

	

S (X) = CO	 R	 co	
+m	

Y P+m+1P	 = CO R E	 _" Y w-^

	

P=0	 P m=0	 m	 p=0 P n=p 
n P

(C . 5)

Inverting the order of summation, Eq. (C.5) transforms to

S (X) =
00	 CO
 E Y "+ E	

"

n=0	 p=0 n - p
Rp = CO	 "+IWn Y	 (C•6)

n=0

where

CO
W = E 	 "	 R

n	 p
P=0	 P

i •e•,

WO -- R0

W1 = R0+R

(C.7)
2	 2	 2

W2 = 0 R0 +	 RI + 2 R2

...................

W = R0 +	 R^ + 2 R2 + . .+	 Rn	 "

p + m	 is a binomial coefficient i .e., 	 (p+1) (p+2) .... (p+m)
m	 M 



Equation (C.6) is valid for sufficiently small Y. For large values of X, the

series (C. 1) may become divergent, while series (B .6) is convergent. It then

represents the sum of S(X).

If the transformed series (C.6) is divergent, the transformation is repeated

as shown below

1--Y = Z	 or Y =
	

(C.$)

until a convergent expression is obtained.

The aim of Eu' er's transformation is to eliminate a singularity which was

introduced by the method of exponsi on, but which does not belong to the function

itself .

Eul er also considered the particular case when X = 1 t -a-,  Y = 1/2)

Now

S (1) _	 R 	 = E	 W  2 - {n+1)	 (C.9)
n=0	 n=0

The expression (C-9) often times is referred to as Eui er's transformation, which

has the following general form.

	

S (X) z E	 Rn X"}1 = 
CO 

Wn Y n+1	 (C.10)

	

n=0	 n=0

To elucidate the procedure, consider the series

S (X) = 1+4 X = X - 4X2 + 16X3 - 64X4 + 256X5 - 1024X 6 f .. .
(C,.31)
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For X = 1.

S (1) = 1 - 4 + 16 - 64 + 256 - 1024 + ... .

W0 = 1

W 1 = R0 +R1 =-3

W^ = R0 + 211 1 + R2 = 9 (C. •2)

W3 = RO +	 R 1 + 2 R2 + R3=	 RO + 3R 1 + 3R2 + R3

12+48-64 = - 27
d

W4 = R0 ' +4R 1 + 6112 + 4R3 + R4 = 81

It is clear that these coefficients can be conveniently obtained in the

following manner by arranging the coefficient of R in the tablen

1	 -4	 16	 -64	 256	 -1024

-3	 12	 -48	 192	 -768

	

9	 -36	 144	 -576

-27	 108	 -432

81	 -324

	

-243	 (C 13)
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where each term in the second row is obtained by taking the algebraic sum of

the two adjacent terms above it, similarly for the third tow, etc .

WO = 1, W 1 = -3, W2 = 9, W3 = -27 , W4 = 81, W5 = -243	 (C .14)

Therefore, Eq. (C.9) becomes

n=0	 2	 2	 2	 2	 2
(C. 15)

which is still divergent. Repau i ng Eul er's transformation:

1	 3	 9	 27	 81	 243
2	 4	 8	 16	 32	 64

	

_ 1	 3	 _ 9	 27	 _ 81

	

4	 8	 16 32	 64

1	 _ 13	 9	 _ 27
8	 16	 32

1	 3	 9
16	 32	 64

	

1	 3

	

32	 64

.	 t

`	 (C.16)64

Hance,

S (1)	 4	 16 + 64	 256 + 0324 4096 +



= .25 - . 0625 + .01563 - .00391 + .000977 	 000244 + . . .

W .19993 Pd 
1 15
	 (C. 17)

The following propertiep of Euler's transformation should be noted.

(1)	 E CR	 C E
n=0	 "	 n=0
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Rn

0
(2)	 Z	 (R + Wn = Z

	

n=0	 "	 n=0

m
R + E W
n n:0	 n

(3)	 R0 + (R I + R2 + R3 + .. .) = R0 + R I + R2 + R3 + .. .

i.e., if R0 + R I + R2 + • • •, is summable to R, the series (R i + R2 + ...) is

summable to (R - R0 ). Eul er's sum of a series does not change if a finite number

of terms are separated and then added to the sum of the remaining terms; but an

infinite number of zero terms cannot be disregarded without changing the value

of the sum .

Eul er's transformation does not always improve the convergence of con-

vergent series. Eul er also applied the transformation to semi-convergent series.

In this case, the subsequent transformations need not be applied from the first

term .

In the application of Eul er's tf ansformati on to sum a series, the trans-

formation is applied to a certain number of terms, and the initially convergent



terms only are retained; the procedure is then repeated fe • the remaining terms.

The above procedure gives a better approximation than if the some number of

transformations are applied to all terms starting from the first one.

The fol I owi ng rules may be noted in applying the transformation:

1. Since only a limited  number of terms is usually available, al I

terms including zeros, should be retained.

2. The transformation can be started from any term; the best re s.ui l is

obtained if the lost term in the expression is the smallest one, and

the convergence is better for the same number of transfor°,-nations.

The final results corresponding to different reasonable combinations

should, however, differ but slightly.

3. Repeated transformations not only improve the convergence but also

slow it down. It is therefore advisable to use only as few transformations

as possible.
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APPENDIX D

MULLER ' S ITERATIVE TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS

This technique finds a root of the general nonlinear equation f (x) : 0

in the range of x from x  to xr . Mul I er's iteration scheme at successive

bisection and inverse parabolic interpolation is used. The procedure ussumes

f (xk)•f^,xr)	 s 0
	

(L-).:)

An iterative step can be described as shown in the following sketch:



At first, the middle of the interval will be computed.

i .e.,

x	 1
m 	2 ( xk + x r )
	

(D.2)

In case f (xm ) . f (xr) < 0, xk and xr are interchange6, thus program make

sure that

f (xm ) . f (xr ) > 0
	

(D .3)

In case, f (x 
M ) > f (x r ) , x 

r 
is replaced by x 

m 
and the sequence is

— 

repeated. If after a specified number of successive bisections f (X 
m

)> f (xr„}

the error parameter i s set equal to two and the procedure returns to the cal I i ng

112

program .

The second bisection steps lead to f (x m ) <

compute by inverse parabolic interpolation:

f (x ) . Thus, one can
r

x -- x  - Lx

where

Ox0f(x)	
xm xk

k	 f (x 
m )-f X̂k )

I+ f (xm)

f (xr ) - 2f (x m )+f  (xk )

If X - f xm	 xr - f (X-171	 (D .4)

This iterative procedure can end if the relative error 16X is less than

a specified tolerance. If it is not and if done l ess than a specified number of

iteration steps, it sets x  = x in case f (x) . f (x k ) < 0 or x  = x  and x  = x



in case f (x) . f (xk ) > 0 and the procedure starts from tFe very begi nnn ng .

Each i t orati on step requires two evaluations of f (x) and usually the

procedure guarantees quadratic convergence. However, convergence may fail due

to rounding errors. In this case of so, the error parameter is set equal to two and

the procedure returns to th -ailing program. Further details can be obtained

from Reference C111].
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